- · 《数学的实践与认识》期[01/26]
- · 《数学的实践与认识》投[01/26]
- · 数学的实践与认识版面费[01/26]
金属学及金属工艺论文_基于主成分分析协同深度
作者:网站采编关键词:
摘要:文章摘要:为快速精确地预测板凸度,建立了一种基于主成分分析(principal component analysis,PCA)协同深度神经网络(deep neural network,DNN)的板凸度预测模型PCA-DNN。首先,对从某热轧厂采
文章摘要:为快速精确地预测板凸度,建立了一种基于主成分分析(principal component analysis,PCA)协同深度神经网络(deep neural network,DNN)的板凸度预测模型PCA-DNN。首先,对从某热轧厂采集的10 134卷带钢生产数据进行数据预处理。其次,用PCA法对数据样本进行分析,通过计算特征值、主成分贡献度和累计贡献度进行特征选择。最后,训练最佳的PCA-DNN预测模型,并与传统的两个模型人工神经网络(artificial neural network,ANN)和DNN进行比较。结果表明,PCA-DNN模型预测准确率为97.02%,训练时间为120 s,预测时间为291 ms,具有最优的综合性能,能够快速精确地预测热轧带钢板凸度。
文章关键词:
项目基金:《数学的实践与认识》 网址: http://www.sxdsjyrs.cn/qikandaodu/2021/1130/910.html