计算机软件及计算机应用论文_面向正常拟合迁移

来源:数学的实践与认识 【在线投稿】 栏目:期刊导读 时间:2021-11-11
作者:网站采编
关键词:
摘要:文章摘要:针对现有成员推理攻击(MIA)在面向正常拟合迁移学习模型时性能较差的问题,对迁移学习模型在正常拟合情况下的MIA进行了系统的研究,设计异常样本检测获取容易受攻击的

文章摘要:针对现有成员推理攻击(MIA)在面向正常拟合迁移学习模型时性能较差的问题,对迁移学习模型在正常拟合情况下的MIA进行了系统的研究,设计异常样本检测获取容易受攻击的数据样本,实现对单个样本的成员推理攻击。最终,将提出的攻击方法在4种图像数据集上展开攻击验证,结果表明,所提MIA有较好的攻击性能。例如,从VGG16(用Caltech101预训练)迁移的Flowers102分类器上,所提MIA实现了83.15%的成员推理精确率,揭示了在迁移学习环境下,即使不访问教师模型,通过访问学生模型依然能实现对教师模型的MIA。

文章关键词:

项目基金:《数学的实践与认识》 网址: http://www.sxdsjyrs.cn/qikandaodu/2021/1111/864.html



上一篇:数学论文_趣味数学——桶排序
下一篇:自然地理学和测绘学论文_罗德里格矩阵对自检校

数学的实践与认识投稿 | 数学的实践与认识编辑部| 数学的实践与认识版面费 | 数学的实践与认识论文发表 | 数学的实践与认识最新目录
Copyright © 2019 《数学的实践与认识》杂志社 版权所有
投稿电话: 投稿邮箱: