环境科学与资源利用论文_基于多源数据机器学习

来源:数学的实践与认识 【在线投稿】 栏目:期刊导读 时间:2021-10-26
作者:网站采编
关键词:
摘要:文章摘要:随着社会经济快速发展和水资源系统复杂性的日益增强,我国水环境质量的演变逐渐呈现跨区域、多因素耦合影响的特点。围绕大空间范围的水质预测问题,针对传统水质预测

文章摘要:随着社会经济快速发展和水资源系统复杂性的日益增强,我国水环境质量的演变逐渐呈现跨区域、多因素耦合影响的特点。围绕大空间范围的水质预测问题,针对传统水质预测方法中对水文、气象及社会经济多因素考虑的不足,以广东省31个水质监测站在2008年到2016年间每周的水质等级数据为训练样本,选取降雨、蒸发和气温等气象指标以及GDP、总人口数、人口密度等社会经济指标为预测参数,运用支持向量机、决策树以及人工神经网络等机器学习技术,建立区域水质等级的预测模型。结果表明,机器学习方法可融合气象和社会经济等多源的、不同时空尺度的数据,对水质等级进行预测。其中,基于随机森林的预测模型表现性能最佳,预测准确率达到77.11%;基于支持向量机的预测模型次之,预测准确率达到74.99%。与现有的水质预测方法相比,本文提出的方法的计算速度快、不需要提取数据的统计特征、操作简单、能够分析社会经济因素对水质的影响,更容易在水环境治理中使用。

文章关键词:

项目基金:《数学的实践与认识》 网址: http://www.sxdsjyrs.cn/qikandaodu/2021/1026/833.html



上一篇:公路与水路运输论文_软岩浅埋隧道锚开挖方案比
下一篇:有机化工论文_碳纤维复合材料双箭头波纹拉胀结

数学的实践与认识投稿 | 数学的实践与认识编辑部| 数学的实践与认识版面费 | 数学的实践与认识论文发表 | 数学的实践与认识最新目录
Copyright © 2019 《数学的实践与认识》杂志社 版权所有
投稿电话: 投稿邮箱: